Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
China Journal of Chinese Materia Medica ; (24): 3106-3115, 2021.
Article in Chinese | WPRIM | ID: wpr-888050

ABSTRACT

To obtain the difference of the fungal and bacterial community diversity between wild Cordyceps sinensis, artificial C. sinensis and their habitat soil, Illmina Hiseq high-throughput sequencing technology was applied. The results show that Proteobacteria was the dominant bacterial phylum in C. sinensis, Actinobacteria was the dominant bacterial phylum in soil microhabitat, Ophiocordyceps sinensis was the predominant dominant fungus of C. sinensis. The α diversity analysis showed that the fungal diversity of stroma was lower than other parts, and the fungal diversity of wild C. sinensis was lower than that of artificial C. sinensis. The β diversity analysis showed that the fungal and bacterial community diversity of soil microhabitat samples was significantly different from that of C. sinensis. The fungal community diversity was less different between wild and artificial C. sinensis, especially in sclerotia. LEfSe analysis showed a lot of species diversity between wild and artificial C. sinensis. Those different species between wild C. sinensis, artificial C. sinensis and their habitat soil provide ideas for further research on breed and components of C. sinensis.


Subject(s)
Cordyceps/genetics , High-Throughput Nucleotide Sequencing , Microbiota/genetics , Soil , Soil Microbiology
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 393-400, 2020.
Article in English | WPRIM | ID: wpr-827230

ABSTRACT

Cordycepin was the first adenosine analogue used as an anticancer and antiviral agent, which is extracted from Cordyceps militaris and hasn't been biosynthesized until now. This study was first conducted to verify the role of ribonucleotide reductases (RNRs, the two RNR subunits, RNRL and RNRM) in the biosynthesis of cordycepin by over expressing RNRs genes in transformed C. militaris. Quantitative real-time PCR (qRT-PCR) and western blotting results showed that the mRNA and protein levels of RNR subunit genes were significantly upregulated in transformant C. militaris strains compared to the control strain. The results of the HPLC assay indicated that the cordycepin was significantly higher in the C. militaris transformants carrying RNRM than in the wild-type strain, whereas the RNRML was preferentially downregulated. For the C. militaris transformant carrying RNRL, the content of cordycepin wasn't remarkably changed. Furthermore, we revealed that inhibiting RNRs with Triapine (3-AP) almost abrogated the upregulation of cordycepin. Therefore, our results suggested that RNRM can probably directly participate in cordycepin biosynthesis by hydrolyzing adenosine, which is useful for improving cordycepin synthesis and helps to satisfy the commercial demand of cordycepin in the field of medicine.

SELECTION OF CITATIONS
SEARCH DETAIL